Feature extraction and local Zernike moments based geometric invariant watermarking

Abstract

A robust and geometric invariant digital image watermarking scheme based on robust feature detector and local Zernike transform is proposed in this paper. The robust feature extraction method is proposed based on the Scale Invariant Feature Transform (SIFT) algorithm, to extract circular regions/patches for watermarking use. Then a local Zernike moments-based watermarking scheme is raised, where the watermarked regions/patches can be obtained directly by inverse Zernike Transform. Each extracted circular patch is decomposed into a collection of binary patches and Zernike transform is applied to the appointed binary patches. Magnitudes of the local Zernike moments are calculated and modified to embed the watermarks. Experimental results show that the proposed watermarking scheme is very robust against geometric distortion such as rotation, scaling, cropping, and affine transformation; and common signal processing such as JPEG compression, median filtering, and low-pass Gaussian filtering.

Publication
in Multimedia tools and applications [SCI, JCR Q2]
Xiaochen Yuan
Xiaochen Yuan
Associate Professor